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ON THE THEORY OF LIMIT LOADS* 

YA.A. KANENYAHZH and A.G. MHRZLYAKOV 

The theory of limit loads /l-?/makes use of certain conditions imposed 
on the yield surface. It is usually assumed that the zero stresses lie 
strictly within it and(or) that the yield surface is bounded. These 
conditions, hcwever, are not satisfied in some cases (e.g. for perfectly 
free-flowing media the yield surface has the form of a cone with the apex 
at zero /8/t. Below it is shown that the basic assertions concerning 
the limit load remain valid also in many cases when the above conditions 
are not satisfied. However, the assertions will then not hold for all 
laods, but for a certain (wide) class described below. At the same time, 
the assertions may not be valid for other loads, e.g. thekinematic method 
yields only a trivial upper estimate for the load reserve coefficient. 
The corresponding example given below shows that the constraints usually 
imposed on the yield surface are essential from the point of satisfying 
the known assertions as applied to all loads. 

1. First we shall consider, the simplicity, a discrete, rigorously perfect plastic system. 
Let S=R" be the space of internal forces, F = R" the space of the corresponding deforma- 
tion rates and <u,e> the intensity of the work done by internal forces u on the deformation 
rates e. The set C of plastically admissible forces (not emerging outside the yield surface) 
is defined by the relation @(u)<O where @ is a convex function. The force s end the 
deformation rates e in the system are governed by the associated law or, which amounts to the 
same thing, by the principle of maximum plastic intensity (o,e> > (o,.e) for all 'I, satisfying 
the condition Q, (ut)< 0. 

We assume that the forces u = 0 are plastically admissible (a (O),< 0), but do not 
necessarily represent an internal point of the set C of admissible forces. The set is also 
not assumed to be bounded. Thus the conditions, sufficient /6/ for the static a (I) and 
kinematic B(1) limiting load coefficients 1 to coincide, are not satisfied (we call the 
limiting coefficients the best estimates obtained with help of the static and kinematic 
coefficients /9/, respectively). Nor, generally speaking, 
a = 0 is an internal point of the set C! 

is the condition (stating that 
ensuring the non-deformability of the system under 

the load ~1 at O< p< ~(1) satisfied. Nevertheless, we shall describe a class of loads 
for which these properties are maintained (below we give an example of a load for which they 
are not maintained). The following assertion holds, 

If a coefficient v> 0 can be shown for a load f such, that the load yl is balanced 
by the safe forces, then 1) the limiting static and dynamic coefficient of this load will be 
identical a(l)= p(l), 2) the system will remain rigid under the load ~1 with coefficient 

O<~<u.(l). 
(The forces u will be called safe if u is 

an internal point of the set C of the physically 
admissible forces). 

Let ev be safe forces balancing the load 
yl. We shall consider an auxiliary, rigorously 
perfect plastic system differing from the initial 
system only in the domain of plastically admissible 
forces which we shall define by the condition 
aJ'(IJ) z Q (D + 4, < 0. 

We note that if the static coefficient of the 
Fig.1 load 1 m,>y for the initial system, i.e. the 

load m,l is balanced by some forces T and e(r)< 
0, 

(mr- 
then the forces ~-5~ balance the load 

Y)! and are admissible for the auxiliary system; UP(T-~= @(r)cc,. Similarly, if ~12~0 
is the static coefficient of the load I for the auxiliary system then m,= m,'+p will be its 
static coefficient for the initial system. Then the relation o[= a'+-~ will hold for the 
corresponding limiting static coefficients. 

Let 8 denote the kinematically admissible deformation rates, in particular, and let the 
intensity of work done by the load I--_(++ 
remembering that the forces f%v 

e)>,O (the expression for the intensity is written 
balance the load 1). If D(C) = sup} (0. e): @(a) < 01 is the 
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dissipation /lo/ for the initial system, then the dissipation for the auxiliary system will be 
DC (e) = sup (((I, e) : 0’ (a) < 0) = sup (cr - a+., e) : Q, (1) < 0) = D (c) - (sy, e) 

Then the relation between the kinematic load coefficients for the initial (mk) and auxili- 

ary (mk') system becomes obvious 

D (e) m*=--, p (e) _ 
‘y-‘s,, e, 

mko=-_mk-y 
cpk,, e) 

as well as the relation P= vi_? connecting the corresponding limiting coefficients. 
Since ay are the safe forces for the initial system it follows that a=0 is the internal 

point of the set of plastically admissible forces of the auxiliary system. This implies that 
conditions /6/ sufficient for the equality a'= fi to hold are satisfied for this system. By 
virtue of the relation established above, CL and a', fi and pare foundatthe sametime as a = fi 
This provesthe first part of the assertion. Let O<p<a(l). We shallshowthatthe load 11 can be 
balancedby certain safe forces o,,. When O<p<y, we take e,,= py-*ov Indeed, since uv appearsin the 
setcofpermissible forcestogetherwitha certainneighbourhoodV, o,occursinCtogetherwiththe 
neighbourhood py-' 1 (seeFig.la); the forces o,, aresafe. When y<p<a(l),wecanfind p'(p<p'< 
a(I) suchthatthe load ~'1 willbebalancedby certainadmissible forces e,,,. In this case we 
shall write V in the form p= a~$(1 - a)~'(0 < o <l) and take a,, = aaY + (1 - a)",,,. It is clear 
that au are safe, since they appear in C together with the circle nl‘-+(i-a")~,,, (Fig.lb) . 

Thus both cases the load ~1 is balanced by the safe forces and the system therefore remains 
rigid /4/. This completes the proof. 

Thus the basic assertion of the theory of limit laods remains valid for the class of loads 
shown. The reserve coefficient can be found by means of the kinematic or static methods, and 
the limiting estimates agree. For the loads belonging to the class in question the reserve 
coefficient a(l)= p (1) retains its usual meaning. When r> a(l), the load 1.11 cannot be 

Niu! 

Fig.2 Fig.3 

balanced by the piastically admissible fcrces, and when 0< p < a o), it causes no deformation 
(failure). When 1' =O. we have a unique situation, different from the usual one, namely 
the zero load is the limiting load. This will be the case for e.g. a perfectly granular medium. 
In this case the variation in the load applied to the system mus t be considered as starting 

not from the zero load, but from some load balanced by the safe stresses (e.g. for a perfectly 
granular medium this would be the hydrostatic pressure). 

The proof of the assertion does not differ in any way, in the general case of a continu.Ar., 
frca the proof for the discrete case. We shall just explain certain concepts used. The finite 

dimensional space of internal forces is replaced in the case of a continuum by the functional 
space s of the stress fields (and similarly for the space of the rate of deformation F). We 

assume that the conditions of Theorem 2 of /6/ hold for S,F. The safe stress field is 
determined as above, i.e. it enters the set C of plastically admissible stress fields together 
with its neighbourhood. By the neighbourhood we mean a sphere of the stress space (if it is 
normal) or, generally, a neighbourhood in topology in which F is conjugate to S (for details 

see /6, ll/. 
We note that the definition of safety of the stress field is somewhat more restricted 

than the usual one (in which the stress field e is called safe if the inequality a, (fl (I)) < (' 

where at,(o)=0 represents the yield condition corresponding to the point I. holds at every 
point of the body). Suppose, for example, in the case of the Mises plasticity condition 
I,(a(z))= k(z), the dependence of the second invariant of the stress deviator Iz(o) and yield 
point k on I, have the form shown in Fig.Za (the stress field has a discontinuity),orin Fig. 
2b) the body is inhomogeneous and the yield point has a discontinuity). In both cases (I is 

safe in the usual sense, but not safe in the sense used here. 

Note. The essential aspect of the proof of the second part of the assertion is not the 
fact that the stresses sY are safe, i.e. that they are in the set C of admissible stress fields 

together with their neighbourhoods, but the fact that they appear in C together with the set 
of the form sv&fJ where Q is an absorbent set. (The set Q is called absorbent if for any 
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e from s a number h>O can be found such that 10 is in Q). 

2. Let us indicate another type of condition ensuring, for any load, that its limiting 
static and kinematic coefficients are identical, namely the closure of the set C -+ 2: where 

X is the collection of all selfequilibrating i.e. equilibrating the load 1 = 0, stress 
fields belonging to S. Indeed, the closure of I?+ r is equivalent to the closure of the 
set C^ introduced in /5/. In /6/ it was shown that the closure of CA implies the equality 
a=fi and the boundedness of C was used as its sufficient condition. 

3. Using an example we shall now show what may happen if the restrictions imposed on the 
yield surface, usually adopted in the theory of limit laods, are not satisfied, and the applied 
load does not belong to the class shown in Sect.1. Namely, we shall describe a system and a 
load 1 applied to it. Although the load is a limit one, the kinematic method applied to it 
yields the value of the limiting kinematic coefficient equal to B(l) = +w, or in other words, 
it does not provide the upper estimate for the limit load. In particular, in this case the 
limiting static and kinematic coefficients are no longer identical (a(I)<-+m, fi(l) = j-0). The 
lower estimate for the limit load derived with help of the statically admissiblestresses also 
loses its meaning. In the case of the load p(I) with the coefficient O<c<a(I), we have the 
statically admissible stresses, nevertheless the load is a limit load and the body begins to 
flow (fail) under its influence. 

Let us consider a beam rigidly clamped at one end and under tensile flexure caused by a 
longitudinal force and a moment, at the other end. Let I. y, I be the orthogonal coordinates 
with the z axis directed along thebeam axis and the beam itself occupying the segment O<:< L. 
Let us denote by .V (21. Q,(;J. QV (~1. M,(L),M~(EI the longitudinal force, shear forces and bending 
moments respectively at the point z, and (' (Z) and o(z) the velocity at the point z and 
angular velocity cf rotation of the corresponding transverse section. 

The following ccndltions hold at the clamped beam end: 
L‘ (Or = 0. w (0) = 0 (3.1) 

Let there be no transverse forces at the other beam end, and let the following kinematic 
condition hold: 

Q,(L) = 0. Q"(L) = 0: o,(L) -= 0 (3.2) 

The beam is subjected to a longit.Jdinal force ! and bending moment about the axis y-my 
both applied at the end := L Gf the beam. This means that at this end we have, in addition 
to c3.2:, the conditions 

df, (L' = ,ny, .v (L) = ! (3.31 

We note that since there are nc external forces when O<r< L the equations of equilibrium 
of the beam and the first twc conditions cf (3.2; tcgether yeild the equation Q,(a)= Q,,(Z)= 0. 
Then from the equations of eqcilibri.Jm and conditions (3.3' we find, that Al, = COc& M, = conct = 
my. .\- = const = f (the system is staticaliy irdetermirete: tie qilantity M, connected with the 
coupling reaction correspondin; tc the iast csnditic;l c,f (3.21 is not deterr.ined).Tnus, when 
the forces in the bear. are in eqlilibri.Jr with the ioab ir. question, they are characterized 
by three n-umbers nr,. .\I,. .\-. 

Exanip2e 1. Le: us consider a discrete, strictly perfectly piastic system with internal 
forces o = (.II,..II,..Y) belonging tc the space S = R3, defcrmation rates e = (ox, oIi. LI belonging 
t@ the space F= Rj, and the intensity cf piastic work (o,ci = .IJ,w,+ J~+,,~-.Y~. 

We write the kinematic conditicns in the form 
61Z = 0 (3.4) 

The conditions separate o':t the set E of the kinematicaliy adnissible deformation rates. 
The ccnditicns of equilibri.Am h:a\ve the forr .V, = "z~..\- = /(my.! is the given external load' . 
We ccnsider, as the yield surface, the cone .V,.il, = .V1, M,>O and the correspcnding set 

of Flastically admissible fcrces 

C = ((WI. .IJ,,, .Vi E RS : .Y~.<.l/,AJy. .VI>O) 

Let a lead 1 :.f = je > 0. nI" = 0 act or. the beam. Fig.3 shows the sets of plastically 
admissible forces C, kinemetically admissible deformation rates E, selfequilibrated forces 
r and the forces X, equilibrating the load 1. 

Let us find the limiting kinematic load coefficient 

B (1) = inf (D (c)/(for) : c = (0. my. I). L‘ > 0) (3.5) 
Here the first addition indicates the general form of the deformation rate vector c 

kinematically admissible for the system in question, and the second condition is the condition 
of positive intensity of work done by the external forces for, > 0. 
as always, 

The quantity D(CI is given, 
by the relation 

D (C) = rup { (7, e, : T E C) (3.6) 

We shall show that S(I) = - 00. To show this, it is sufficient to confirm that for the 
vector c shown in (3.5!, the upper bound in (3.6) is equal to LOC. Indeed, let us take, as 
the vector e. the forces oA = (2A (wV VI*. A.A 1'Tl wyI ‘I) which is clearly plastically admissibie. 
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Then D (P)>, (aA, e, = A (my+ 1/TI my II. When ou#OI the arbitrariness of A>0 implies that 
D(c)=-cu. If w,=o. an analogous conclusion is reached when #J,=(A,A,A). 

Thus we have p(l)= +03. In other words, if we attempt to use 
the kinematically admissible vector c (when the intensity of the 

a 
I 

,’ ‘1’ 
/' My 

/ 

IF!22 

work done by external forces is positive) to find the forces (I 
which would be connected with e by an associated law, we find that 
there are no such forces, This means that the kinematic method does 

/ A 
not provide an estimate for the limit load. 

Note. 
' /' 

In the case of the load I in question, the load ~1 can- 

L7 
J% not be equilibrated by the plastically admissible forces no matter 

/ what the value of p>O is (Fig.3). However, this is not the 
reason for the impossibility of applying the kinematic method of 

Fig.4 
assessment. The example given above can easily be altered so that 
the load would be balanced by the plastically admissible forces. 

To do this, it is sufficient to take the yield surface shown in Fig.4. Here we have, as 
before, B(l)= t-00. We also note that in the case in question the set C+ Z is closed. 

Example 2. Let us consider the same beam with a given load as a continuous system. In 
thiscasethe stresses and strain rates 

are functions in the segment O<zf L; the intensity of the plastic work is 

The dissipation D (e) = sup to.e) where the upper limit is computed over all forces satisfy- 
ing the condition .vz (:) < .!I, (z) Mv (z,, M, (z) > 0 with (I:/ :< L . In particular, we can take 

o = od = (.lJz,, Mva. S,) 

Then, since ox (L) = (1. we have D (e) > <(rA. c = A (ov (Li 7 v*Tiw,(L)l) and, as in Example 1, 
D(e)=rcc and fi(I)=-l;a.i.e. the kinerr.atic method does not provide an estimate for the load 
reserve coefficient. 

The examples given show that the assumptions adopted in /l-?/or in Sect.1 and 2 above, 
are essential for the weil-known assertions of the th ecry of limit loads to held. 
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