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ON THE THEORY OF LIMIT LOADS”

YA.A. KAMENYARZH and A.G. MERZLYAKOV

The theory of limit loads /1-7/makes use of certain conditions imposed
on the yield surface. It is usually assumed that the zero stresses lie
strictly within it and{(ocr) that the yield surface is bounded. These
conditions, however, are not satisfied in some cases {(e.g. for perfectly
free-flowing media the yield surface has the form of a cone with the apex
at zero /8/). Below it is shown that the basic assertions concerning

the limit load remain valid also in many cases when the above conditions
are not satisfied. However, the assertions will then not hold for all
laods, but for a certain (wide} class described below. At the same time,
the assertions may not be valid for other loads, e.g. the kinematic method
yields only a trivial upper estimate for the load reserve coefficient.
The corresponding example given below shows that the constraints usually
imposed on the yield surface are essential from the point of satisfying
the known assertions as applied toc all loads.

1. PFirst we shall consider, the simplicity, a discrete, rigorously perfect plastic system.
let S =R™ be the space of internal forces, F = R™ the space of the corresponding deforma-
tion rates and <o,e> the intensity of the work done by internal forces ¢ on the deformation
rates e. The set C of plastically admissible forces (not emerging outside the yield surface)
is defined by the relation @ (o)< 0 where @ is a convex function. The force © and the
deformation rates e in the system are governed by the associated law or, which amounts to the
same thing, by the principle of maximum plastic intensity <o,e> > {g,,e) for all o, satisfying
the condition @ (o,) < 0.

We assume that the forces ¢ = 0 are plastically admissible (@ (0) < 0), but de not
necessarily represent an internal point of the set C of admissible forces. The set is also
not assumed to be bounded. Thus the conditions, sufficient /6/ for the static a{l) and
kinematic § (1) limiting load coefficients ] to coincide, are not satisfied (we call the
limiting coefficients the best estimates obtained with help of the static and kinematic
coefficients /9/, respectively). Nor, generally speaking, is the condition (stating that
o0 =0 is an internal point of the set ) ensuring the non-deformability of the system under
the load pl at 0 p<a(l) satisfied. Nevertheless, we shall describe a class of loads
for which these properties are maintained (below we give an example of a load for which they
are not maintained). The following assertion holds,

If a coefficient % >0 can be shown for a load | such, that the load ¥l is balanced
by the safe forces, then 1) the limiting static and dynamic coefficient of this load will be
identical a«(l) = B (1), 2) the system will remain rigid under the load pl with coefficient
OuLa).

(The forces o will be called safe if o is
an internal point of the set C of the physically
admissible forces).

Let s, be safe forces balancing the load
yl. We shall consider an auxiliary, rigorously
perfect plastic system differing from the initial
systen only in the domain of plastically admissible
forces which we shall define by the condition
0°(o)§®(o+sv)<0.

We note that if the static coefficient of the

Fig.l load | my>y for the initial system, i.e. the
load mJd is balanced by some forces r and @ (1<
0, then the forces t—s5, balance the load
(m¢— v} and are admissible for the auxiliary system; Pt —8) =@ (1)< 0. Similarly, if m°
is the static coefficient of the load 1 for the auxiliary system then m,= m° 4y will be its
static coefficient for the initial system. Then the relation a= a® -+ y will hold for the
corresponding limiting static coefficients.

Let & denote the kinematically admissible deformation rates, in particular, and let the
intensity of work done by the load P— <y, e >0 (the expression for the intensity is written
remembering that the forces y'is, balance the load I}. If D(e)=sup}<o. e ® (o) <O} is the
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dissipation /10/ for the initial system, then the dissipation for the auxiliary system will be
Dr (e) = sup {<0, &) : @ (0) <O} =sup (KT — 8., ) : D (v) <0} = D (e) — <5y, €
Then the relation between the kinematic load coefficients for the initial (myx) and auxili=
ary (my°) system becomes cbvious

D (e) o _DP(e)
e kT G e kT

rnk:

as well as the relation §= f°+y connecting the corresponding limiting coefficients.

Since s, are the safe forces for the initial system it follows that o¢=0 is the internal
point of the set of plastically admissible forces of the auxiliary system. This implies that
conditions /6/ sufficient for the equality a°=f§° to hold are satisfied for this system. By
virtue of the relation established above, a and a° B and p° are found at the same time as a = §.
This proves the first part of the assertion. Let 0 < u < a{l). We shall show that the load pl can be
balanced by certain safe forces o,. When 0<pu <y, wetake 0, = py~lo,. Indeed, since o, appears in the
set C of permissible forces together with a certain neighbourhood v, ¢, occurs in C together with the
neighbourhood py !V (seeFig.la); the forces o, aresafe. When r<p<a(l),wecanfind p'(p<p’ <
@ (l) such that the load u’l will be balanced by certain admissible forces o,.. In this case we
shall write p in the form p=ay+ (1 —a)p' (0<a< 1) and take o, = a0, +"(i-—a)o“,. It is clear
that o, are safe, since they appear in C together with the circle oV 4 (1 —0) o, (Fig.1lb).

Thus both cases the load pl is balanced by the safe forces and the system therefore remains
rigid /4/. This completes the proof.

Thus the basic assertion of the theory of limit laods remains valid for the class of loads
shown. The reserve coefficient can be found by means of the kinematic or static methods, and
the limiting estimates agree. For the loads belonging to the class in question the reserve
coefficient o« (1) = B (1) retains its usual meaning. When u > a(l), the load pl cannot be
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Fig.2 Fig.3

balanced by the plastically admissible fcrces, and when 0<{p < a(l), it causes no deformation
(failure). When pn =0, we have a unigue situation, different from the usual one, namely

the zerc load is the limiting load. This will be the case for e.g. a perfectly granular medium.
In this case the variation in the load applied to the system must be considered as starting

not from the zero load, but from some load balanced by the safe stresses {e.g. for a perfectly
granular medium this would be the hydrostatic pressure).

The procf of the assertion does not differ in any way, in the general case of a continuum,
from the proof for the discrete case. We shall just explain certain concepts used. The finite
dimensional space of internal forces is replaced in the case of a continuum by the functional
space S of the stress fields (and similarly for the space of the rate of deformation F). We
assume that the conditions of Theorem 2 of /6/ hold for S,F. The safe stress field is
determined as above, i.e. it enters the set C of plastically admissible stress fields together
with its neighbourhood. By the neighbourhood we mean a sphere of the stress space (if it is
normal) or, generally, a neighbourhood in topology in which F is conjugate to S (for details
see /6, 11/.

We note that the definition of safety of the stress field is somewhat more restricted
than the usual one (in which the stress field ¢ is called safe if the inequality @ (o (z)) U
where @, (o) =0 represents the yield condition corresponding to the point z. holds at every
point of the body). Suppose, for example, in the case of the Mises plasticity condition
I, (6 (z)) = k (z), the dependence of the second invariant of the stress deviator I,(c) and yield
point k on z, have the form shown in Fig.Za (the stress field has a discontinuity), orin Fig.
2b) the body is inhomogeneous and the yield point has a discontinuity). In both cases o is
safe in the usual sense, but not safe in the sense used here.

Note. The essential aspect of the proof of the second part of the assertion is not the
fact that the stresses s, are safe, i.e. that they are in the set C of admissible stress fields
together with their neighbourhoods, but the fact that they appear in C together with the set
of the form sv+0 where @ is an absorbent set. (The set ¢ is called absorbent if for any
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¢ from S a number i >0 can be found such that is is in ¢).

2. Let us indicate another type of condition ensuring, for any load, that its limiting
static and kinematic coefficients are identical, namely the closure of the set C + I where
T is the collection of all selfequilibrating i.e. equilibrating the lcad 1 = 0, stress
fields belonging to S. 1Indeed, the closure of C + 2 is equivalent to the closure of the
set €~ introduced in /5/. In /6/ it was shown that the closure of C~ implies the equality
a=4f and the boundedness of C was used as its sufficient condition.

3. Using an example we shall now show what may happen if the restrictions imposed on the
yield surface, usually adopted in the theory of limit laods, are not satisfied, and the applied
load does not belong to the class shown in Sect.l. Namely, we shall describe a system and a
load ) applied to it. Although the load is a limit one, the kinematic method applied to it
yields the value of the limiting kinematic coefficient equal to P(l) = + o, or in other words,
it does not provide the upper estimate for the limit load. In particular, in this case the
limiting static and kinematic coefficients are no longer identical (a(l) <+ o, B()) = + o). The
lower estimate for the limit load derived with help of the statically admissible stresses also
loses its meaning. In the case of the load u(l) with the coefficient ¢ <<p < a(l), we have the
statically admissible stresses, nevertheless the load is a limit load and the body begins to
flow (fail) under its influence.

Let us consider a beam rigidly clamped at one end and under tensile flexure caused by a
longitudinal force and a moment, at the other end. Let gz, y, 2z be the orthogonal coordinates
with the z axis directed along the beam axis and the beam itself occupying the segment 0<:< L.
Let us denote by N (2). Oz (z). Qy (21. My (), My () the longitudinal force, shear forces and bending
moments respectively at the point z, and v () and o (z) the velocity at the point z and
angular velocity cf rotation of the corresponding transverse section.

The following ccnditions hold at the clamped beam end:

v (0) =0, w0 =0 (3.0

Let there be nc transverse forces at the other beam end, and let the following kinematic
condition hold: 0= 0. QL= 0: wx(L) =0 (3.2)

The beam is subjected to a longitudinal force ; and bending moment about the axis y— my,
beth applied at the end :=L of the bean. This means that at this end we have, in addition
te (3.2}, the conditions

My (L= my, N(L)y={ (3.3
We note that since there are nc external forces when 0« :< L the equations cf equilibrium
of the beam and the first two conditions cf (3.2) together veild the equation (4 (2) = Uy (2) = 0.
Then from the equaticns of eguilibrium and conditions (3.3 we find, that M, = const, M, = const =
my. N = const = f (the system is statically irdetermirzte: the guantity M, connected with the
coupling reaction corresponding tc the last conditicn of (2.2} is not determined ). Thus, when

the forces in the bear are in equilibriurm with the locaé in gquestion, they are characterized
by three numbers M. JM,. \.

Example 1. Let us consider a discrete, strictiy perfectly plastic system with internal
forces o = (M;. M, V) belonging tc the space S =R? defcrmaticn rates e = (W, wy. 1) belonging
to the space F =R®, and the intensity cf plastic work (o, e; = Myw, + Mywy — N,

We write the kinematic conditicns in the form

wy =0 (3.4)
The conditions separate out the set E of the kinematically admissible deformation rates.
The cenditions ¢f equilibrium have the form M, = my. N =/ (my. f is the given external lcad .

We ccnsider, as the yield surface, the cone MM, = N, M. >0 ancd the correspendinc set
of rlastically admissible fcrces
C={(M,. uy, Nie R Nig .\/:My. M. >0}
Let a lcad 1:f=/>0 my=0 act or the beam. Fig.3 shows the sets of plastically
admissible forces C, kinemztically admissitle deformation rates E, selfequilibrated forces
p) and the forces IX; equilibrating the load I
Let us find the limiting kinematic lcad coefficient
B () = inf (D (e)/(for) : @ = (0. ©y. r). v > 0} (3.5)
Here the first addition indicates the general form cf the deformation rate vector e
kinematically admissible for the system in question, and the second condition is the condition
of positive intensity of work done by the external forces for> 0. The quantity D (e) is given,
as always, by the relation
D(e)=sup{«1, e&:1e (} (3.6)
We shall show that B ()= — . To show this, it is sufficient tc confirr. that for the
vector e showrn in (3.5), the upper bound in (3.6) is equal to =+ «. Indeed, let us take, as
the vector e. the forces o, = (24 (0, 1% A. A} 2| w,|.1; which is clearly plastically admissible.
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Then D (e)> 0, e = A4 (0, + 1/7| wy]). When wo,s0, the arbitrariness of A4>0 implies that
D(e)= +oo. If w,=0an analogous conclusion is reached when o, =1(4,4,4)
Thus we have B ()= + . In other words, if we attempt to use

the kinematically admissible vector e (when the intensity of the

w4 M work done by external forces is positive) to find the forces o
1 ) A which would be connected with e by an associated law, we find that

/ L// there are no such forces, This means that the kinematic method does
/1 not provide an estimate for the limit load.

Note. 1In the case of the load 1 in question, the load pl can=
7 ~ Mz not be equilibrated by the plastically admissible forces no matter
what the value of u>0 is (Fig.3). However, this is not the
reason for the impossibility of applying the kinematic method of
assessment. The example given above can easily be altered so that
the load would be balanced by the plastically admissible forces.

To do this, it is sufficient to take the yield surface shown in Fig.4. Here we have, as
before, f(I)= 4 . We also note that in the case in question the set C+ ¥ is closed.

Fig.4

Example 2. Let us consider the same beam with a given load as a continuous system. In
this case the stresses and strain rates

do dw
o=(M_M,N), e=( x T d”)

z ' d: ' dz

are functions in the segment 0<:z

< L; the intensity of the plastic work is
L
<0.9>=§
1)

dw dw dv \
(Mx (2) _E:i -+ My () —df-l- + N () E) dz

The dissipation D (e) = sup<o.ey where the upper limit is computed over all forces satisfy-
ing the condition A?() < Me (2} My (2, My(z:)> 0 with (s :g L. In particular, we can take

6=0,= (M, MM,NA)

w, (L} \2 jo, (L) |
v .o 510y
M o410y =24 (TII,) s MyA:A, A ("):Al/?'———v(l,)
Then, since wy(L)= 0. we have D(e)> 0, e = 4 (oy (L) + V' 2iwyl)}} and, as in Example 1,
D()=+oc and f() =+ . i.e. the kinematic methcd does not provide an estimate for the load

reserve coefficient.
The examples given show that the assumptions adcpted in /1—7/or in Sect.l and 2 above,
are essential for the well-known assertions of the thecry of limit loads to hcld.
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